| Design Speed, MPH | <u>20</u> | <u>30</u> | <u>40</u> | 50 | <u>60</u> | |--|----------------------|-----------|-----------|------------------------|------------| | Stopping Sight Distance - Min. Distance, Ft. Des. Distance, Ft. | 150
150 | _ | | | 475
650 | | Min. K* Value For: | | | | | | | Min. Crest Curve
Des. Crest Curve
Min. SAG Curve
Des. SAG Curve | 16
16
24
24 | 28
35 | 65 | 85
145
75
100 | 300
105 | | Passing Sight Distance - | | | | | | | Min. Passing Distance,
Feet (2 lane)
Min. K* Value For Crest | | 1100 | 1500 | 1800 | 2100 | | Vertical Curve | | 365 | 686 | 985 | 1340 | Sight distance provided for stopped vehicles at intersections should be in accordance with, "A Policy on Geometric Design of Rural Highways". 4. The following table shows the maximum degree of curve and related maximum superelevation for design speeds. The maximum rate of roadway superelevation (e) for rural roads wth no curb and gutter is .08. The maximum rate of superelevation for urban streets with curb and gutter is .06 with .04 being desirable. ^{*}K is a coefficient by which the algebraic difference in grade may be multiplied to determine the length in feet of the vertical curve which will provide minimum sight distance.